Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.753
Filtrar
1.
Environ Microbiol ; 26(4): e16614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570900

RESUMO

Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of Zymoseptoria tritici, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.


Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Appl Environ Microbiol ; 90(4): e0178223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557086

RESUMO

Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.


Assuntos
Aspergillus fumigatus , Fungicidas Industriais , Humanos , Estados Unidos , Fungicidas Industriais/farmacologia , Azóis/farmacologia , Filogenia , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana
3.
Mol Plant Pathol ; 25(4): e13458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619888

RESUMO

Due to rapidly emerging resistance to single-site fungicides in fungal pathogens of plants, there is a burgeoning need for safe and multisite fungicides. Plant antifungal peptides with multisite modes of action (MoA) have potential as bioinspired fungicides. Medicago truncatula defensin MtDef4 was previously reported to exhibit potent antifungal activity against fungal pathogens. Its MoA involves plasma membrane disruption and binding to intracellular targets. However, specific biochemical processes inhibited by this defensin and causing cell death have not been determined. Here, we show that MtDef4 exhibited potent antifungal activity against Botrytis cinerea. It induced severe plasma membrane and organelle irregularities in the germlings of this pathogen. It bound to fungal ribosomes and inhibited protein translation in vitro. A MtDef4 variant lacking antifungal activity exhibited greatly reduced protein translation inhibitory activity. A cation-tolerant MtDef4 variant was generated that bound to ß-glucan of the fungal cell wall with higher affinity than MtDef4. It also conferred a greater reduction in the grey mould disease symptoms than MtDef4 when applied exogenously on Nicotiana benthamiana plants, tomato fruits and rose petals. Our findings revealed inhibition of protein synthesis as a likely target of MtDef4 and the potential of its cation-tolerant variant as a peptide-based fungicide.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungicidas Industriais/farmacologia , Plantas/metabolismo , Peptídeos , Defensinas/genética , Defensinas/farmacologia , Defensinas/metabolismo , Cátions , Doenças das Plantas/microbiologia , Botrytis/metabolismo
4.
Pestic Biochem Physiol ; 200: 105806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582572

RESUMO

Boscalid, a widely used SDHI fungicide, has been employed in plant disease control for over two decades. However, there is currently no available information regarding its antifungal activity against Sclerotium rolfsii and the potential risk of resistance development in this pathogen. In this study, we evaluated the sensitivity of 100 S. rolfsii strains collected from five different regions in China during 2018-2019 to boscalid using mycelial growth inhibition method and assessed the risk of resistance development. The EC50 values for boscalid ranged from 0.2994 µg/mL to 1.0766 µg/mL against the tested strains, with an average EC50 value of 0.7052 ± 0.1473 µg/mL. Notably, a single peak sensitivity baseline was curved, indicating the absence of any detected resistant strains. Furtherly, 10 randomly selected strains of S. rolfsii were subjected to chemical taming to evaluate its resistance risk to boscalid, resulting in the successful generation of six stable and inheritable resistant mutants. These mutants exhibited significantly reduced mycelial growth, sclerotia production, and virulence compared to their respective parental strains. Cross-resistance tests revealed a correlation between boscalid and flutolanil, benzovindiflupyr, pydiflumetofen, fluindapyr, and thifluzamide; however, no cross-resistance was observed between boscalid and azoxystrobin. Thus, we conclude that the development risk of resistance in S. rolfsii to boscalid is low. Boscalid can be used as an alternative fungicide for controlling peanut sclerotium blight when combined with other fungicides that have different mechanisms of action. Finally, the target genes SDHB, SDHC, and SDHD in S. rolfsii were initially identified, cloned and sequenced to elucidate the mechanism of S. rolfsii resistance to boscalid. Two mutation genotypes were found in the mutants: SDHD-D111H and SDHD-H121Y. The mutants carrying SDHD-H121Y exhibited moderate resistance, while the mutants with SDHD-D111H showed low resistance. These findings contribute to our comprehensive understanding of molecular mechanisms underlying plant pathogens resistance to SDHI fungicides.


Assuntos
Basidiomycota , Compostos de Bifenilo , Fungicidas Industriais , Niacinamida/análogos & derivados , Fungicidas Industriais/farmacologia , Succinato Desidrogenase , Medição de Risco , Doenças das Plantas/microbiologia
5.
Pestic Biochem Physiol ; 200: 105815, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582573

RESUMO

Fusarium graminearum is an important fungal pathogen causing Fusarium head blight (FHB) in wheat and other cereal crops worldwide. Due to lack of resistant wheat cultivars, FHB control mainly relies on application of chemical fungicides. Both fludioxonil (a phenylpyrrole compound) and phenamacril (a cyanoacrylate fungicide) have been registered for controlling FHB in China, however, fludioxonil-resistant isolates of F. graminearum have been detected in field. To evaluate the potential risk of dual resistance of F. graminearum to both compounds, fludioxonil and phenamacril dual resistant (DR) mutants of F. graminearum were obtained via fungicide domestication in laboratory. Result showed that resistance of the DR mutants to both fludioxonil and phenamacril were genetically stable after sub-cultured for ten generations or stored at 4 °C for 30 days on fungicide-free PDA. Cross-resistance assay showed that the DR mutants remain sensitive to other groups of fungicides, including carbendazim, tebuconazole, pydiflumetofen, and fluazinam. In addition, the DR mutants exhibited defects in mycelia growth, conidiation, mycotoxin deoxynivalenol (DON) production, and virulence Moreover, the DR mutants displayed increased sensitivity to osmotic stress. Sequencing results showed that amino acid point mutations S217L/T in the myosin I protein is responsible for phenamacril resistance in the DR mutants. Our results indicate that mutations leading to fludioxonil and phenamacril dual resistance could result in fitness cost for F. graminearum. Our results also suggest that the potential risk of F. graminearum developing resistance to both fludioxonil and phenamacril in field could be rather low, which provides scientific guidance in controlling FHB with fludioxonil and phenamacril.


Assuntos
Dioxóis , Fungicidas Industriais , Fusarium , Pirróis , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Cianoacrilatos , Doenças das Plantas/microbiologia
6.
Pestic Biochem Physiol ; 200: 105828, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582592

RESUMO

Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Fusarium/genética , Soja , Simulação de Acoplamento Molecular , China
7.
PLoS One ; 19(4): e0301584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578716

RESUMO

Argentina is among the most important lemon fruit producers in the world. Penicillium digitatum is the primary lemon fungal phytopathogen, causing green mold during the postharvest. Several alternatives to the use of synthetic fungicides have been developed, being the use of biocontrol yeasts one of the most promising. Although many of the reports are based on the use of a single yeast species, it has been shown that the combination of agents with different mechanisms of action can increase control efficiency through synergistic effects. The combined use of native yeasts with different mechanisms of action had not been studied as a biological control strategy in lemons. In this work, the mechanisms of action of native yeasts (Clavispora lusitaniae AgL21, Clavispora lusitaniae AgL2 and Clavispora lusitaniae AcL2) with biocontrol activity against P. digitatum were evaluated. Isolate AgL21 was selected for its ability to form biofilm, colonize lemon wounds, and inhibit fungal spore germination. The compatibility of C. lusitaniae AgL21 with two killer yeasts of the species Kazachstania exigua (AcL4 and AcL8) was evaluated. In vivo assays were then carried out with the yeasts applied individually or mixed in equal cell concentrations. AgL21 alone was able to control green mold with 87.5% efficiency, while individual killer yeasts were significantly less efficient (43.3% and 38.3%, respectively). Inhibitory effects were increased when C. lusitaniae AgL21 and K. exigua strains were jointly applied. The most efficient treatment was the combination of AgL21 and AcL4, reaching 100% efficiency in wound protection. The combination of AgL21 with AcL8 was as well promising, with an efficiency of 97.5%. The combined application of native yeasts showed a synergistic effect considering that the multiple mechanisms of action involved could hinder the development of green mold in lemon more efficiently than using single yeasts. Therefore, this work demonstrates that the integration of native yeasts with diverse modes of action can provide new insights to formulate effective microbial consortia. This could lead to the development of tailor-made biofungicides, allowing control of postharvest fungal diseases in lemons while remaining competitive with traditionally used synthetic chemicals.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Saccharomycetales , Leveduras , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Esporos Fúngicos , Frutas/microbiologia , Doenças das Plantas/microbiologia
8.
PLoS One ; 19(4): e0301519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578751

RESUMO

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Assuntos
Ascomicetos , Fungicidas Industriais , Magnaporthe , Oryza , Ácido Quínico/análogos & derivados , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Oryza/microbiologia , Flavonoides/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
9.
PLoS One ; 19(3): e0297870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527060

RESUMO

The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Nanopartículas Metálicas , Antifúngicos/farmacologia , Aspergillus flavus , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Aspergillus , Bactérias , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Testes de Sensibilidade Microbiana
10.
Int J Food Microbiol ; 415: 110640, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38442539

RESUMO

Alternaria alternata is a common fungal pathogen causing postharvest decay in table grapes. This study addressed the potential of autochthonous yeasts and bioactive compounds of natural sources to act as biocontrol agents (BCAs) against A. alternata in cold-stored table grapes. With this purpose, 19 yeast capable of growing at 0-1 °C were isolated from the surface of Red Globe table grapes. These isolates, along with the pre-isolated strain Metschnikowia pulcherrima RCM2, were evaluated as BCAs in wounded berries. From these results, six yeast isolates were pre-selected to be combined with bioactive compounds of natural sources, like phenolic compounds (PCs) of side streams of wine industry, including bunch stem extract (BSE) (5-25 %), and cane extract (CE) (5-25 %), and functional polysaccharides from shrimp waste such as chitosan (CH) (0.5 %). Then, the biocontrol efficacy of combined treatments beyond individual ones was compared. The results revealed that 4 yeast isolates, namely M. pulcherrima RCM2 and ULA146, and Aureobasidium pullulans FUL14 and FUL18, were the most effective. However, when combined with the natural bioactive compounds, their efficacy against A. alternata did not increase significantly. Notably, ULA146 and FUL18 demonstrated a biocontrol efficacy of 36-37 %, comparable to that of the treatment with commercial doses of SO2, which only showed a 27 % reduction in the lesion diameter. These findings highlight the potential of using psychrotrophic yeasts as BCAs against A. alternata in cold-stored table grapes. Combining these yeast strains with BSE, CE and CH did not increase BCAs efficacy against this pathogen at the concentrations tested. The development of effective biocontrol strategies for A. alternata could contribute to reducing reliance on chemically synthesized fungicides, promoting sustainable practices, aiming to improve the quality and safety of cold-stored table grapes.


Assuntos
Fungicidas Industriais , Vitis , Vitis/microbiologia , Leveduras , Alternaria
11.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
12.
Pestic Biochem Physiol ; 199: 105786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458686

RESUMO

Ipconazole is a broad-spectrum triazole fungicide that is highly effective against Fusarium pseudograminearum. However, its risk of developing resistance and mechanism are not well understood in F. pseudograminearum. Here, the sensitivities of 101 F. pseudograminearum isolates to ipconazole were investigated, and the average EC50 value was 0.1072 µg/mL. Seven mutants resistant to ipconazole were obtained by fungicide adaption, with all but one showing reduced fitness relative to the parental isolates. Cross-resistance was found between ipconazole and mefentrifluconazole and tebuconazole, but none between ipconazole and pydiflumetofen, carbendazim, fludioxonil, or phenamacril. In summary, these findings suggest that there is a low risk of F. pseudograminearum developing resistance to ipconazole. Additionally, a point mutation, G464S, was seen in FpCYP51B and overexpression of FpCYP51A, FpCYP51B and FpCYP51C was observed in ipconazole-resistant mutants. Assays, including transformation and molecular docking, indicated that G464S conferred ipconazole resistance in F. pseudograminearum.


Assuntos
Fungicidas Industriais , Fusarium , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Fusarium/genética , Desmetilação , Doenças das Plantas
13.
Pestic Biochem Physiol ; 199: 105795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458689

RESUMO

Fusarium head blight in wheat is caused by Fusarium graminearum, resulting in significant yield losses and grain contamination with deoxynivalenol (DON), which poses a potential threat to animal health. Cyclobutrifluram, a newly developed succinate dehydrogenase inhibitor, has shown excellent inhibition of Fusarium spp. However, the resistance risk of F. graminearum to cyclobutrifluram and the molecular mechanism of resistance have not been determined. In this study, we established the average EC50 of a range of F. graminearum isolates to cyclobutrifluram to be 0.0110 µg/mL. Six cyclobutrifluram-resistant mutants were obtained using fungicide adaptation. All mutants exhibited impaired fitness relative to their parental isolates. This was evident from measurements of mycelial growth, conidiation, conidial germination, virulence, and DON production. Interestingly, cyclobutrifluram did not seem to affect the DON production of either the sensitive isolates or the resistant mutants. Furthermore, a positive cross-resistance was observed between cyclobutrifluram and pydiflumetofen. These findings suggest that F. graminearum carries a moderate to high risk of developing resistance to cyclobutrifluram. Additionally, point mutations H248Y in FgSdhB and A73V in FgSdhC1 of F. graminearum were observed in the cyclobutrifluram-resistant mutants. Finally, an overexpression transformation assay and molecular docking indicated that FgSdhBH248Y or FgSdhC1A73V could confer resistance of F. graminearum to cyclobutrifluram.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Micélio , Doenças das Plantas
14.
Sci Rep ; 14(1): 6691, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509170

RESUMO

The clinical effects of Schisandra chinensis against human disease are well-documented; however, studies on its application in controlling plant pathogens are limited. Here, we investigated its inhibitory effect on the growth of Alternaria alternata, a fungus which causes significant post-harvest losses on apples, known as black spot disease. S. chinensis fruit extract exhibited strong inhibitory effects on the growth of A. alternata with an EC50 of 1882.00 mg/L. There were 157 compounds identified in the extract by high performance liquid chromatography-mass spectrometry, where benzocaine constituted 14.19% of the extract. Antifungal experiments showed that the inhibitory activity of benzocaine on A. alternata was 43.77-fold higher than the crude extract. The application of benzocaine before and after A. alternata inoculation on apples prevented the pathogen infection and led to mycelial distortion according to scanning electron microscopy. Transcriptome analysis revealed that there were 4226 genes differentially expressed between treated and untreated A. alternata-infected apples with benzocaine. Metabolomics analysis led to the identification of 155 metabolites. Correlation analysis between the transcriptome and metabolome revealed that benzocaine may inhibit A. alternata growth via the beta-alanine metabolic pathway. Overall, S. chinensis extract and benzocaine are environmentally friendly plant-based fungicides with potential to control A. alternata.


Assuntos
Fungicidas Industriais , Schisandra , Humanos , Benzocaína/farmacologia , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Alternaria/genética
15.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542855

RESUMO

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Carbamatos/farmacologia , Tiofanato , Antibacterianos
16.
Sci Total Environ ; 926: 171771, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521260

RESUMO

Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.


Assuntos
Clorófitas , Fungicidas Industriais , Poluentes Químicos da Água , Fungicidas Industriais/toxicidade , Azóis/toxicidade , Ecossistema , Clorófitas/metabolismo , Clorofila A , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
17.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
18.
Sci Total Environ ; 926: 171546, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479527

RESUMO

Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.


Assuntos
Fungicidas Industriais , Galliformes , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Codorniz , Galinhas , Triazóis/toxicidade , Triazóis/metabolismo , Expressão Gênica , Esteróis
19.
J Agric Food Chem ; 72(14): 7716-7726, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536397

RESUMO

The emergence of resistant pathogens has increased the demand for alternative fungicides. The use of natural products as chemical scaffolds is a potential method for developing fungicides. HWY-289, a semisynthetic protoberberine derivative, demonstrated broad-spectrum and potent activities against phytopathogenic fungi, particularly Botrytis cinerea (with EC50 values of 1.34 µg/mL). SEM and TEM imaging indicated that HWY-289 altered the morphology of the mycelium and the internal structure of cells. Transcriptomics revealed that it could break down cellular walls through amino acid sugar and nucleotide sugar metabolism. In addition, it substantially decreased chitinase activity and chitin synthase gene (BcCHSV) expression by 53.03 and 82.18% at 1.5 µg/mL, respectively. Moreover, this impacted the permeability and integrity of cell membranes. Finally, HWY-289 also hindered energy metabolism, resulting in a significant reduction of ATP content, ATPase activities, and key enzyme activities in the TCA cycle. Therefore, HWY-289 may be a potential candidate for the development of plant fungicides.


Assuntos
Antifúngicos , Alcaloides de Berberina , Berberina/análogos & derivados , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Botrytis , Açúcares , Doenças das Plantas/microbiologia
20.
Mol Plant Pathol ; 25(3): e13435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476108

RESUMO

Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY: Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE: Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS: Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL: Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Solanum tuberosum , Alternaria/genética , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...